Statistical calibration of the SEQUEST XCorr function.

نویسندگان

  • Aaron A Klammer
  • Christopher Y Park
  • William Stafford Noble
چکیده

Obtaining accurate peptide identifications from shotgun proteomics liquid chromatography tandem mass spectrometry (LC-MS/MS) experiments requires a score function that consistently ranks correct peptide-spectrum matches (PSMs) above incorrect matches. We have observed that, for the Sequest score function Xcorr, the inability to discriminate between correct and incorrect PSMs is due in part to spectrum-specific properties of the score distribution. In other words, some spectra score well regardless of which peptides they are scored against, and other spectra score well because they are scored against a large number of peptides. We describe a protocol for calibrating PSM score functions, and we demonstrate its application to Xcorr and the preliminary Sequest score function Sp. The protocol accounts for spectrum- and peptide-specific effects by calculating p values for each spectrum individually, using only that spectrum's score distribution. We demonstrate that these calculated p values are uniform under a null distribution and therefore accurately measure significance. These p values can be used to estimate the false discovery rate, therefore, eliminating the need for an extra search against a decoy database. In addition, we show that the pvalues are better calibrated than their underlying scores; consequently, when ranking top-scoring PSMs from multiple spectra, p values are better at discriminating between correct and incorrect PSMs. The calibration protocol is generally applicable to any PSM score function for which an appopriate parametric family can be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments.

The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matc...

متن کامل

ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity.

ProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of datab...

متن کامل

Probability-based validation of protein identifications using a modified SEQUEST algorithm.

Database-searching algorithms compatible with shotgun proteomics match a peptide tandem mass spectrum to a predicted mass spectrum for an amino acid sequence within a database. SEQUEST is one of the most common software algorithms used for the analysis of peptide tandem mass spectra by using a cross-correlation (XCorr) scoring routine to match tandem mass spectra to model spectra derived from p...

متن کامل

Computing exact p-values for a cross-correlation shotgun proteomics score function.

The core of every protein mass spectrometry analysis pipeline is a function that assesses the quality of a match between an observed spectrum and a candidate peptide. We describe a procedure for computing exact p-values for the oldest and still widely used score function, SEQUEST XCorr. The procedure uses dynamic programming to enumerate efficiently the full distribution of scores for all possi...

متن کامل

AMASS: Software for Automatically Validating the Quality of MS/MS Spectrum from SEQUEST Results*□S

Time-consuming and experience-dependent manual validations of tandem mass spectra are usually applied to SEQUEST results. This inefficient method has become a significant bottleneck for MS/MS data processing. Here we introduce a program AMASS (advanced mass spectrum screener), which can filter the tandem mass spectra of SEQUEST results by measuring the match percentage of high-abundant ions and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteome research

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2009